Back to All Events

Global and Local Stability of the Normal State of Superconductors under the Effect of Strong Electric Current

Yaniv Almog

Professor
Department of Mathematics
Louisiana State University

Consider a superconducting wire whose temperature is lower than the critical one. When the current through the wire exceeds some critical value, it is well known from experimental observation that the wire becomes resistive, behaving like a normal metal. We prove that the time-dependent Ginzburg-Landau model anticipates this behavior, and obtain upper bound for the critical current. The bounds are obtained in terms of the resolvent of the linearized elliptic operator in ${\mathbb R}^2$ and ${\mathbb R}^2_+$. We then relate this problem to some spectral analysis of a more general class of non-selfadjoint operators.